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Chemical Reaction Networks-Revisited

Definition

Reaction Network :
A chemical reaction network consists of three sets:

(i) a finite set S , elements of which are the species of the
network

(ii) a finite set C of vectors in R+ called the complexes of the
network

(iii) a finite set R ⊂ C x C with the properties:

(a) for each y ∈ C ,(y , y) /∈ R
(b) for each y ∈ C there is a y

′ ∈ C such that (y , y
′
) ∈ R

or(y
′
, y) ∈ R

Members of R are the reactions of the network. When (y , y
′
) ∈ R,

we say that complex y reacts to complex y
′
. The vector y is called

the reactant complex of the reaction y −→ y
′
, and y

′
is called its

product complex. The vector y
′ − y is called the reaction vector.
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Chemical Reaction Networks-Revisited

Remark: The component ys (corresponding to species s ∈ S ) of
the complex y ∈ Rs

+ is usually called by chemists the
stoichiometric coefficient of species s in complex y . For example,
in the complex B+E of Eqn (2) (Previous lecture), the
stoichiometric coefficient of B is 1, the stoichiometric coefficient of
E is 1, and the stoichiometric coefficients of A, D, and C are 0. In
the complex 2B, the stoichiometric coefficient of B is 2, and the
stoichiometric coefficients of A, C, D, and E are 0.

Definition

The support of y , denoted supp y is the set of species that have
nonzero stoichiometric coefficients in complex y . Thus, for
example, supp A + B = {A, B} and supp 2B = {B}. The support
of a complex is, in effect, the set of species that “appear in” that
complex.
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Kinetics

Definition

A kinetics for a reaction network {S, C,R} is an assignment to
each reaction y −→ y

′ ∈ R of a continuously differentiable rate
function Ky−→y ′ : RS

+ → R+ such that

Ky−→y ′ (c) > 0 if and only if supp y ⊂ supp c (1)

5 / 18 Lawi G. Basics of CRN



Recall Ky−→y ′ (c) was the occurrence rate of the reaction

y −→ y
′
when the mixture under study had composition c.

There we required only that the rate functions take
nonnegative values.

In condition given in the definition above, we go a little

further by delineating those c ∈ RS
+ for which the function

Ky−→y ′ (·) takes positive values.

In words, then, in the definition above implies this: Reaction
y −→ y

′
proceeds at nonzero rate, however slowly, if and only

if all species appearing in the reactant complex y are actually
present in the mixture.

For example, A+ C → D proceeds at nonzero rate if and only
if cA and cC are both positive.
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We will say that c is a positive composition if it is a member
of RS

+ — that is, if all species concentrations are strictly
positive. In this case supp c = S , whereupon supp y ⊂ supp
c for all y ∈ C . Thus, if c is a positive composition, we have

Ky−→y ′ (c) > 0, ∀ y −→ y
′ ∈ R (2)

Definition

A kinetic system {S, C,R,K} is a reaction network {S, C,R}
taken with a kinetics K .
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Mass action Kinetics

Definition

A kinetics K for a reaction network {S, C,R} is mass action if, for
each y −→ y

′ ∈ R ,there is a positive number Ky−→y ′ such that

Ky−→y ′ (c) ≡ κy−→y ′
∏
s∈S

cyss (3)

In Eqn (3), ys is the stoichiometric coefficient of species s in
the reactant complex y in the reaction y −→ y

′

The number κy−→y ′ is the rate constant for the reaction

y −→ y
′

With Eqn(3) in mind, then for example in the reaction
A+ C → D

KA+C→D(c) ≡ κA+C→D(cA)
1(cB)

0(cC )
1(cD)

0(cE )
0

= κA+C→D(cA)
1(cC )

1
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Similarly in the reaction 2B → A

K2B→A(c) ≡ κ2B→A(cA)
0(cB)

2(cC )
0(c0)

0(cE )
0

= κ2B→A(cB)
2

If we define cy as follows:

cy : =
∏
s∈S

cyss

Thus, mass action rate functions take the form

Ky→y ′ (c) ≡ κy→y ′ cy

NB:A mass action system {S ,C ,R, κ} is a chemical reaction
network {S ,C ,R}taken with a rate constant specification
κ ∈ RR

+ .
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The Differential Equations for a Kinetic System

Definition

For a kinetic system {S, C,R,K}, the species-formation-rate

function f (·) is defined by the requirement that, for all c ∈ R+
S

f (c) =
∑
R

Ky→y ′(c)(y ′ − y). (4)

A composition c∗ ∈ RS
+ is an equilibrium of the kinetic system if

f (c∗) = 0. A positive equilibrium is an equilibrium in RS
+

Interpretation: If, in our homogeneous reactor, the instantaneous
composition is c , then, for each s ∈ S , fs(c) gives the
instantaneous rate of generation (per unit volume of mixture) of
moles of species s due to the simultaneous occurrence of all
reactions in R.
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The Differential Equations for a Kinetic System

Note that
fs(c) =

∑
R

Ky→y ′(c)(y ′s − ys). (5)

so that fs(c) is obtained by summing all the reaction occurrence
rates, each weighted by the net number of molecules of s produced
with each occurrence of the corresponding reaction. This is
essentially the idea we used in chapter 2. At an equilibrium, the
generation rate of every species is zero.
Note that the species-formation-rate function for the mass action
kinetic system {S, C,R, κ} takes the form

f (c) =
∑
R

κy→y ′cy (y ′ − y). (6)
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The Differential Equations for a Kinetic System

By the differential equation for a kinetic system, we mean

ċ = f (c), (7)

where the overdot denotes time differentiation and f (·) is the
species-formation-rate function. That is, for a kinetic system
{S, C,R,K} the corresponding differential equation is

ċ =
∑
R

Ky→y ′(c)(y ′ − y). (8)

This vector equation of course encodes a system of scalar
equations, one for each species:

cs =
∑
R

Ky→y ′(c)(y ′s − ys )∀s ∈ S (9)

Written for network Eqn(2), the system Eqn(9) is equivalent to
Eqn(10).
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The Differential Equations for a Kinetic System

dcA
dt

=−KA→2B(c) +K2B→A(c)−KA+C→D(c) +KD→A+C (c)+

KB+E→A+C (c) (10)

dcB
dt

=2KA→2B(c)− 2K2B→A(c) +KD→B+E (c)−KB+E→A+C (c)

dcC
dt

=−KA+C→D(c) +KD→A+C (c) +KB+E→A+C (c)

dcD
dt

=KA+C→D(c)−KD→A+C (c)−KD→B+E (c)

dcE
dt

=KD→B+E (c)−KB+E→A+C (c)
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The Differential Equations for a Kinetic System

For a mass action system {S, C,R, κ}, the governing vector
differential equation becomes

ċ =
∑
R

κy→y ′cy (y ′ − y). (11)

The component form is

ċs =
∑
R

κy→y ′cy (y ′s − ys) ∀s ∈ S (12)

With mass action kinetics the rate functions become

(13)
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The Differential Equations for a Kinetic System

(14)
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The Differential Equations for a Kinetic System

Using Eqn(12) with definition Eqn(13) the system of differential
equations induced is given by

dcA
dt

=− αcA + β(cB)
2 − γcAcC + δcD + ξcBcE

dcB
dt

=2αcA − 2β(cB)
2 + εcD − ξcBcE

dcC
dt

=− γcAcC + δcD + ξcBcE (15)

dcD
dt

=γcAcC − δcD − εcD

dcE
dt

=εcD − ξcBcE
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THE END

WHAT NEXT?
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